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1. Introduction

1. Introduction Recently, several central banks, i.e., the European Cen-

tral Bank (ECB), Denmark Nationalbank, Sveriges Riksbank, Swiss National

Bank, and Bank of Japan (BOJ), adopted a monetary policy of negative in-

terest rates. For example, BOJ announced that the interest rate on current

accounts would be － 0.1% starting in January 2016, the deposit rate of the

Swiss National Bank was set at － 0.75% at the end of 2016, and the ECB

lowered the interest rate to － 0.4%. Before these changes to the monetary

policy, people had assumed that a zero interest rate was the lower bound

for interest rates. This bounds as called the zero lower bound (ZLB) by

academics. However, we now know that the lower bound of interest rates

can be negative if the central bank adopts such a monetary policy. Sev-

eral studies have challenged the issue of ZLB using the notion of Black’s

shadow rate (Black 1995). Krippner (2013) estimates the currency-adjusted-

bond (CAB)-Vasicek model. Christensen and Rudebusch (2015) estimate a

three-factor shadow-rate model of Japanese yields. Wu and Xia (2016) con-

sider a multifactor shadow rate term structure model (SRTSM). Ichiue and

Ueno (2015) estimate a Black’s model with Japa’s data and showed that the

shadow rate fell into a negative range even when the call rate was approxi-

mately 0.5% and before the BOJ adapted a zero interest rate policy in 1999.

According to Black (1995), the observed nominal short rate is nonnegative

because currency produces a nominal interest rate of zero. In other words,

currency imposes a ZLB on yields. Black postulated a shadow short rate, st

and assumed that the observed instantaneous risk-free rate rt is given by the
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by the greater of the shadow rate or zero, that is, rt = max{st, 0}. Following

Black (1995), a few studies extended the notion of a zero lower bound to

non-zero lower bound. Although Wu and Xia (2016) simply set the lower

bound at 25 bp, Kim and Priebsch (2013) treat the lower bound as a free

parameter to be estimated, and obtain a value of 14 bp using U.S. Treasury

yields. The aim of this study is to measure the effect of quantitative easing

in a model with time-varying lower bounds of interest rates during the long

period of near-zero interest rates in Japan. In our analysis, we suppose that

lower bounds on interest rates change over time, and the central bank can

influence these bounds by quantitative easing. More specifically, we assume

that a nominal rate, rt is given by the greater of the shadow rate, st and the

lower bound zt, that is , rt = max{st, zt}. In particular, we do not assume

that zt must be nonnegative. We raise several questions that we attempt

to answer as follows: What are the economic implications of negative inter-

est rates? Are lower bounds of interest rates affected by a central bank’s

monetary policy, in particular quantitative easing policy? Should a central

bank target either the monetary base or reserves to stimulate the economy

through quantitative easing? What are the different effects of a policy of

monetary base targeting versus a policy of changing reserves? Similar to

our paper, Wu and Xia (2016) argue that the Federal Reserve succeeded in

lowering the unemployment rate, using a multi-factor shadow rate term struc-

ture model1. Our approach is different from Wu and Xia’s (2016) in several

1Wu and Xia (2017) investigate the effectiveness of the ECB’s negative interest rate
policy on the yield curve with a new shadow-rate term structure model. They find a 10
bp drop in the lower bound lowers the short-term rate by the same amount, and lowers
the 10-year yield by 6 to 8 bp.
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respects. With respect to methodology, we estimate the time-varying lower

bounds of interest rates and examine the effects of quantitative easing on eco-

nomic indicators in a model that explicitly incorporates such lower bounds2.

We also use the shadow rates implied by consumption-Euler equations to

estimate the lower bounds. Our critical assumption is that households’ con-

sumption satisfies the Euler’s equations with respect to shadow rates. Our

study is the first to report time-varying lower bounds of interest rates for

Japanese data. Using the estimated time-varying lower bounds, our study

contributes to the literature that investigates the effectiveness of monetary

policy under a near-zero interest rate environment. We find evidence that

a commitment policy in the midst of the 2000s and large-scale asset pur-

chasing after the global financial crisis (GFC) lowered the lower bounds of

interest rates. We also find new evidence showing that expanding the mon-

etary base is more influential on the economy than expanding the central

bank’s reserves. However, neither of these simple instruments is effective in

lowering the lower bounds of interest rates. We argue that quantitative eas-

ing can reduce these lower bounds, but its effect on the economy is too small.

This study also contributes to the econometric methodology for estimating

the effect of the monetary policy of quantitative easing. Compared to the

existing literature, our method is novel in that we use the shadow rates im-

plied by the consumption-Euler equation. The method consists of four parts.

First, we derive Euler equations for two types of utility functions, constant

relative risk aversion (CRRA) type and habit type, and obtain the implied

2Christensen and Rudebusch (2015, p238-239) state that they are skeptical about the
use of a non-zero lower bound, partly because of the lack of motivation.
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real and nominal rate of interest rates. Second, we treat the implied rates

as shadow rates and estimate the shadow rate affine arbitrage-free Nelson-

Siegel (AFNS) models by the Kalman filter. The AFNS model belongs to

a class of broader affine term structure models (Duffie and Kan 1996, Dai

and Singleton2000, Duffee 2002). Third, using the estimated parameters of

the AFNS models, we compute the time-varying lower bounds of the actual

interest rates, as the theoretical option price. Finally, we estimate the factor-

augmented vector autoregressive(FAVAR) model including a lower bound as

one of the variables. The final analysis provides impulse responses of the

macroeconomic indicators to the quantitative easing, i.e., the expansion of

the monetary base and the BOJ’s reserves. The paper is organized as fol-

lows. Section 2 describes our methodology. Section 3 provides the estimated

results. Section 4 concludes the paper.

2. Econometric methodology

2.1. The outline of econometric methodology

Our econometric approach consists of the following four steps.

Step 1 : We derive the implied real rates from the consumption-Euler equa-

tion.

Step 2 : From the series of implied real rates and inflation rates, we calcu-

late the nominal shadow rates.

Step 3 : We estimate shadow-rate AFNS models, using the estimated shadow

rates. We derive implied lower bounds using the estimated parameters

of AFNS models by numerically solving the theoretical option pricing

formula.
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Step 4 : We estimate the FAVAR model, including implied lower bounds

and a quantitative easing measure.

Here after, we explain these four steps in turn.

2.2. Euler equation and the implied real rate

In Step 1, we consider Euler equations for two utility functions. First, we

consider the usual CRRA utility

u(Ct) =
1

1− α
C1−α

t (1)

where Ct denotes consumption at time t and α denotes relative risk aver-

sion. For an individual maximizing his or her discounted lifetime utility, the

consumption-Euler equation of consumptions between t and t+ T becomes

exp(−r(t, T )T ) = β(t, T )Et

[(
Ct+T

Ct

)−α
]

(2)

where β(T ) is a discount factor, r(t, T ) is a real shadow rate at time t ma-

turing at time t + T , and Et denotes the conditional expectation at time

t.

Defining ct = lnCt and assuming a log-normal distribution, the above

equation becomes

exp(−r(t, T )T ) = β(t, T ) exp
(
−α(Et(ct+T )− ct) + 0.5α2Vt(ct+T )

)
(3)

where Vt denotes the conditional variance at time t.
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Second, we consider the habit model of Fuhrer (2000), which assumes

that the consumer’s period utility function is

u(Ct, Ht) =
1

1− α

(
Ct

Hγ
t

)1−α

(4)

where Ht is the habit level of consumption at period t and γ is a parameter

indexing the importance of habit. When the autocorrelation coefficient of Ht

is close to zero, the utility function becomes

u(Ct, Ht) =
1

1− α

(
Ct

Cγ
t−1

)1−α

(5)

Then, the Euler equation is given by

β(t, T ) exp(−r(t, T )T ) =
exp(at)− β(t, T )γ exp(bt)

exp(dt)− β(t, T )γ exp(et)
(6)

where

at = γ(α− 1)ct−1 − αct

bt = (γ(α− 1)− 1)ct + (1− α)Etct+T + 0.5(1− α)2Vt(ct+T )

dt = γ(α− 1)ct − αEtct+T − Etπt+T + 0.5α2Vt(ct+T ) + 0.5Vt(πt+T )

+ αcovt(ct+T , πt+T )

et = (γ(α− 1)− 1)Etct+T + (1− α)Etct+T+1 − Etπt+T + 0.5(γ(α− 1)− 1)2Vt(ct+T )

+ 0.5(1− α− 1)2Vt(ct+T+1) + 0.5Vt(πt+T ) + (1− α)(γ(α− 1)− 1)covt(ct+T , ct+T+1)

− (1− α)(covt(πt+T , ct+T+1) + covt(πt+T , ct+T ))

Following Canzoneri et al. (2007), we derive the implied real rates r̂(t, T )
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for each of the two utility functions using Eqs. (3) and (6), respectively.

2.3. Nominal shadow rate implied by Euler equation In Step 2, we cal-

culate a nominal shadow rate s(t, T ) using the implied real rate and the

inflation rate π(t, T ) as

ŝ(t, T ) = r̂(t, T ) + π(t, T ), (7)

as the implied by Fisher equation.

2.3. The upper bound as a strike price of shadow bond option

In Step 3, we consider shadow-rate AFNS models. As explained briefly

in the introduction, we extend Black’s notion of shadow rate as

i(t, T ) = max{s(t, T ), z(t, T )} (8)

where i(t, T ) is a nominal interest rate and z(t, T ) is a lower bound on the

nominal interest rate. The lower bound of interest rates corresponds to the

upper bound of bond prices. When the ZLB applies, the upper bound of

bond prices is equal to its face value If we define the upper bound of a bond

price as Z(t, T ), the bond price cannot exceed the upper bound Z(t, T ). This

means that a bondholder must sell the shadow bond at price Z(t, T ) when this

occurs. In other words, the bond holder is a seller of a call option on a shadow

bond with a strike price Z(t, T ). Therefore, holding a bond with an upper

bound is the same as holding the shadow bond and selling the call option.

The upper bound of the bond price Z(t, T ) can be greater than, equal to, or

smaller than the bond’s face value. If holding cash involves no friction, and
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cash pays zero interest rate, the upper bound is just the bond’s face value. If

there are relative benefits to holding bonds or relative costs to holding cash,

and if cash pays zero interest rate, the upper bound becomes greater than

the bond’s face value because the positive cost of cash means that the actual

rate on holding cash, including this cost, is negative. In contrast, if there are

relative benefits to holding cash or relative costs to holding bonds, and if cash

pays a zero interest rate, the upper bound becomes lower than the bond’s face

value because the positive benefit of holding cash means that the actual rate

on holding cash, including this benefit, is positive. The central bank’s reserve

policy affects the benefit/cost ratio of holding cash, as long as we consider

reserves equivalent to cash. The Federal Reserve began to pay interest on

reserves in 2008 (Emergency Economic Stabilization Act). Following FRB,

BOJ also began to pay interest on the excess reserves in 2008. Curdia and

Woodford (2011) argue that the optimal interest payment on reserves should

be equal to the policy rate. When the interest rate on reserves is positive,

this interest rate can be regarded as a relative benefit of holding reserves (or

cash), which makes the lower bound of the interest rate positive. When the

interest rate on reserves is negative, this interest rate can be regarded as the

relative cost of holding reserve (or cash), which makes the lower bound of the

interest rate negative. In this way, the central bank can influence the lower

bound of the interest rate by changing the benefit/cost ration of holding

cash relative to bonds. An alternative way to affect the benefit/cost ratio

is to buy a large amount of bonds through open market operations. Several

studies have investigated the effect of large-scale asset purchases (Gertler

and Karadi 2013, D’Amico and King 2013, D’Amico et al. 2012, Chen et al.
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2012, Gagnon et al. 2011, Vayanos and Vila 2009). For example, the Federal

Reserve purchased $1.75 trillion in 2009, the Bank of England purchased

$275 billion in 2012, and BOJ purchased ¥100 trillion as of 2012. Large-scale

asset purchase programs, which typically leave a low amount of bonds in the

market, increase the cost of holding bonds relative to cash because financial

institutions must hold bonds for regulatory reasons such as Basel regulation

or for allocating their assets efficiently by holding an appropriate amount

of risk-free assets. Such policy makes it difficult for financial institutions to

find sellers of bonds, which means that the benefit of holding bonds related

to regulatory or other reasons increases. As mentioned in the introduction,

we do not observe the lower bounds of interest rates, which can be positive,

zero, or negative. Hence, we need to estimate these lower bounds by partly

applying the method of Krippner (2012) and Christensen and Rudebusch

(2015) (hereafter abbreviated as KCR) 3. The idea of this method comes

from Black’s option theory of interest rates. We utilize the fact that holding

a bond with an upper bound is the same as holding the shadow bond and

selling a call option on the bond. As has been argued by KCR, the final

value to the bondholder, Wt, is given by the smaller of either the shadow

bond price S(T, T ) or the upper bound price Z(T, T ). That is,

WT = min{S(T, T ), Z(T, T )} = S(T, T )−max{S(T, T )− Z(T, T ), 0} (9)

3See also Christensen and Rudebusch (2016).
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The last term on the right-hand side represents the payoff of a call option

with a strike price of Z(T, T ) and an original asset S(T, T ) Therefore, holding

a bond with an upper bound is equivalent to holding the shadow bond and

selling this call option. Following KCR, we consider a European call option

at time 0 with maturity T and a strike price Z(T, T ) written on the shadow

discount bond maturing at T + δ. T + δ is the shortest maturity available

after time T . This call option approximates the option in Eq. (9), whose

value is defined as

C(T, T + δ, Z(T, T )) = EQ
0 [S(0, T )max{S(T, T + δ)− Z(T, T ), 0}]

= S(0, T + δ)N(d1)− Z(T, T )S(0, T )N(d2)

(10)

where

d1 =

(
ln

S(0, T + δ)

S(0, T )Z(T, T )
+ 0.5Tν2

t

)
1

νt
√
T
,

d2 = d1 − νt
√
T ,

(11)

νt is the diffusion coefficient, and N is the cdf of the standard normal dis-

tribution. The conditional expectation in Eq. (10) is taken with respect to

the risk neutral measure Q. Then, the value of the auxiliary bond with an

upper bound Z(T, T ) is approximately equal to

P (T, T + δ) = S(0, T + δ)− C(T, T + δ, Z(T, T )) (12)

, which comes from Eq. (9). As already mentioned, the value of this auxil-

iary bond is the value of the shadow bond minus the price of a call option.
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Following KCR, we consider the instantaneous forward rate on the auxiliary

bond, which is defined as

f(t, T ) = lim
δ→0

[
− d

dδ
P (T, T + δ)

]
(13)

where we assume that the actual bond is approximated by the auxiliary bond

and regard f(t, T ) as the forward rate of the actual bond4. Furthermore,

following KCR, the forward rate on the shadow bond f(t, T ) and that of the

actual bond f(t, T ) satisfy

f(t, T ) = f(t, T ) + g(t, T ). (14)

where the adjustment term g(t, T ) is given by5

g(t, T ) = lim
δ→0

(
d

dδ

(
C(t, T, T + δ, Z(t, T ))

P (t, T )

))
= z(t, T ) + (f(t, T )− z(t, T ))N

(
f(t, T )− z(t, T )

νt

)
+ νt

1√
2π

exp

(
−1

2

[
f(t, T )− z(t, T )

νt

]2) (15)

4See Eq. (5) in Christensen and Rudebusch (2015). KCR’s currency-adjusted-bond-
Vasicek model consider the bond price at time t maturing at the shortest maturity avail-
able, t + δ. Investors can either buy the bond at a price P (t, t + δ) and receive one unit
of currency at the maturity date or just hold the currency. The availability of currency
implies that the last incremental forward rate of any bond will be nonnegative due to the
future availability of currency in the immediate time prior to its maturity. When letting
δ → 0, the continuous limit identifies the nonnegative instantaneous forward rate.

5This equation is similar to the last equation on page 238 of Christensen and Rudebusch
(2015).
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The adjustment term g(t, T ) represents the change in the value of call option

maturing at time T .

2.4. The shadow-rate AFNS model

We consider a three-factor AFNS model as in Christensen and Rudebusch

(2015) and Christensen et al. (2011). The shadow rate is assumed to follow

s(t, T ) = X1
t +X2

t , (16)

and the three state variables follow
dX1

t

dX2
t

dX3
t

 = −


0 0 0

0 λ −λ

0 0 λ



X1

t

X2
t

X3
t

 dt+


σ11 0 0

σ21 σ22 0

σ31 σ32 σ33



dW 1,Q

t

dW 2,Q
t

dW 3,Q
t

 (17)

As is well known, the yield of AFNS(3) is given by

iy(t, T ) = X1
t +

(
1− e−λ(T−t)

λ(T − t)

)
X2

t

+

(
1− e−λ(T−t)

λ(T − t)
− e−λ(T−t)

)
X3

t −
A(t, T )

T − t

(18)

, where the factor loading structure is similar to that in Nelson and Siegel

(1987). 6. The three factors X1
t , X

2
t , and X3

t represent as the factor loadings

of level, slope, and curvature, respectively. The last term on the right hand

side A(t, T )/(T − t) is a yield-adjustment term that guarantees no arbitrage.

The drift coefficient λ and the volatility matrix in Eq. (17) determines this

6See the first equation in page 235 of Christensen and Rudebusch (2015).
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adjustment term and the volatility of the yields ν2
t = Vt(lnP (t, τ))7.

2.4.1. The procedure for estimating the lower bounds

Now we explain the procedure for estimating the lower bounds of interest

rates in Step 3. The procedure consists of the following two parts: (3-1) Esti-

mating the parameters of the AFNS model and (3-2) Estimating the implied

lower bounds. In step (3-1), using shadow rates for each maturity given in

Eq. (7), we estimate a state-space model consisting of two equations. One

is a transition equation that is derived from the discrete version of the state

process, given in Eq. (17). The transition equation describes the dynamics

of the unobserved state factors. The second equation is a measurement equa-

tion given in Eq. (18). We add Gaussian white noise random disturbances

to each equation and assume that the disturbances are orthogonal to each

other.

We estimate a state-space model using the Kalman filter and obtain σ2
ij

and λ for the AFNS(3) model. Using these estimated parameters, we com-

pute the conditional volatility of yields νt.

In step (3-2), using the conditional volatility of yields νt, we calculate

the lower bound given by Eqs. (14) and (15). Inserting the forward rates on

actual bonds and shadow bonds into Eq. (14), we obtain the estimate of lower

bound ẑ(t, T ) in Eq. (15) by solving numerically the nonlinear equation.

7The volatility of the yields is given by νt in page 236 of Christensen and Rudebusch
(2015).

14



2.5. FAVAR estimation

Finally, in Step 4, using the estimated lower bound ẑ(t, T ), we consider

several FAVAR specifications of the above model. We consider three unob-

servable factors and one observable variable, which is either the monetary

base or the BOJ’s reserves. We consider the observational equations con-

sisting of a series of 131 informational variables listed in Appendix Table

A1.

We employ a two-step approach as in Bernanke et al.(2005) to estimate

the three-factor FAVAR. The procedure consists of two steps. In step (4-1),

we estimate principal components of the informational variables Xit. In step

(4-2), we estimate the usual VAR of three factors Ft that were estimated in

step (4-1). and one of the exogenous monetary variables, Mt. We calculate

the We calculate the impulse response of major economic indicators to the

impulses, following the method of Wu and Xia (2016). The indicators are

IP (Industrial Production), CU (Capacity Utilization), UR (Unemployment

Rate), HS (Housing Start), PI (Price Index), and LB (Lower Bound). Defin-

ing a vector of these indicators as Yt, the observation equation is specified

as

Yt = a+ bFFt + bMMt + ηt (19)

Letting the monetary shock be ϵt, the impulse response of indicator Yt to ϵt

at time t+ l is given by

l∑
j=0

( ∑
k=1,2,3

bFk

∂Ft+j,k

∂ϵt
+ bM

∂Mt+j

∂ϵt

)
(20)
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, where Ft+j,k denotes the k-th factor at t+ j.

3. Estimation results

3.1. Data

Our monthly sample data set starts in January 1991 and ends in Decem-

ber 2016. We employ consumption data from the Family Income and Ex-

penditure Survey provided by the Statistics Bureau of Ministry of Internal

Affairs and Communications. We also employ consumer price index (CPI)

provided by the same Bureau. We consider the growth rate of consumption

in real terms and interest rates for one, three, six, and twelve months. In this

paper, we do not analyze maturities longer than one year. This is because

the evidence indicates that the lower bound of shorter maturity tends to be

negative and to vary over time. This is because evidence indicates that the

lower bound of shorter maturity terms tends to be negative and vary over

time. We adjust the influence of a rise in consumption tax in April 1997 and

April 2014, following the BOJ’s report8. We consider two CPIs and rates

of consumption growth with and without residential expenditure. Since the

results turned out to be similar, we only report below the results using data

including residential expenditure.

3.2. Calculating shadow rate and lower bound

This section explains the results of steps 1, 2 and 3. Figure 1 and 2 depict

the actual nominal rates i(t, T ), the implied shadow rates ŝ(t, T ) calculated

8The report’s title is The method of estimating consumer prices adjusted for consump-
tion tax, which is published by the Research and Statistics Department of BOJ in Novem-
ber 2016.
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according to Eqs. (3), (6), and (7), and the lower bound ẑ(t, T ) calculated ac-

cording to Eq. (8) for the maturity. The utility function is either a standard

CRRA or Fuhrer (2000)’s habit utility. According to our GMM estimation

results of the Euler equations, the typical estimated β is 0.998 and the coeffi-

cient of relative risk aversion is α = 0.019. Our implied shadow rate for each

maturity term mostly stays around zero. It occasionally exhibits a lower or

higher level than that found in Christensen andRudebusch (2015, Figure 5,

B-AFNS(3) model).

For the 2002–2007 period during which near-zero or negative shadow rates

are reported in Christensen and Rudebusch (2015), our implied shadow rate

exhibits positive rate ranging from 1 bp to 5 bp. Ichiue and Ueno (2015)

report an even lower negative - rate, than that reported in Christensen and

Rudebusch (2015) during that period10.

Although Kim and Singleton (2012) also report a negative shadow rate

during 2002–2006 period, their reported rate is more closer to that level

reported in Christensen and Rudebusch (2015) than that of Ichiue and Ueno

(2015). Compared to the rates reported in the existing literature, our implied

rates are relatively higher. Ours is the closest to that of the B-AFNS(3)

model of Christensen and Rudebusch (2015). One reason that our implied

shadow rate is relatively high is that we estimate it using consumption-Euler

9Canzoneri et al.(2007) report that the mean of the implied real rate in the U.S. is
7.08% under the assumption of α = 2 and β = 0.993. Such a high relative risk aversion
coefficient produces a high implied real rate, which is inconsistent with recent Japanese
data.

10Ichiue and Ueno (2015) estimate a −3% of shadow rate around the 2002–2003 period
at minimum. Gorovoi and Linetsky (2004) also report that the implied value of the shadow
rate was negative.
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equation, in contrast to other studies. For data on the U.S., there are a

few studies estimating lower bounds of interest rates. Although Wu and Xia

(2016) set the lower bound 25 bp in their main analysis, they also estimate

it using a robustness check. The estimated time-invariant lower bound is

19bp in the U.S, which is close to the estimated lower bound found in Kim

and Priebsch (2013). However, there is no literature reporting the lower

bound for Japan. As shown in Figure 1 and 2, each dynamic of lower bound

seems to show similar actuations, independent of the utility function and the

maturity term. Except for the period from March 2001 to July 2006, and for

the period after the GFC, the lower bounds of interest rates nearly coincide

with the actual rates, which implies that strike prices of call options were

far lower than the actual price of the bond. Hence, the prices of call options

were very low. In other words, there was room for lowering the shadow rate

below the level implemented by the BOJ. The result suggests that the BOJ

kept interest rates higher than the corresponding lower bounds. In contrast,

there are large gaps between the lower bound and the rate in the two periods

of mid 2000s and after GFC. The gaps seem to increase with maturity term.

For example, the gap is 0.1% in the mid 2000s for one month and 0.4% for

six months. The lower bounds of interest rates for shorter maturity terms

tend to be higher than those of longer maturity terms. This tendency is

qualitatively inconsistent with the observation that zero is the appropriate

lower bound with the lowest recorded one- and two-year yield being 0.0 bp

and 1.3 bp, respectively, whereas the six-month yield broke the zero bound on

a few occasions but was never lower than −2 bp according to Christensen and

Rudebusch (2015, p238-239). The negative effect of the time to maturity on
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the lower bound suggests that a longer-maturity bond provides more benefits

relative to cash than a shorter-maturity bond. However, in the midst of

2000s, the BOJ did not pay the interest rate on reserves nor buy a large

amount of Japanese Government Bond (JGB). That was a period of so-called

‘ commitment ’(Oda and Ueda2007). In 2001, the BOJ announced that it

is committed to a monetary policy of continued quantitative easing until the

inflation rate became steadily greater than zero. Such a commitment policy

lowered the lower bounds of interest rates in the midst of the 2000s.

—————————————————-

Figure 1

—————————————————-

—————————————————-

Figure 2

—————————————————-

In December. 2008, the BOJ announced that it strengthened its com-

mitment to a monetary easing policy. It began to pay interest rates on

the excess reserves of 10 bp and started a large-scale purchasing of JGB.

It increased the amount of purchasing every year after 2008. The amount

of purchasing increased further after the BOJ introduced quantitative and

qualitative monetary easing in April 2013. The graphs in Figures 1 and 2

indicate that such large-scale asset purchasing also contributed to lowering

the lower bounds. Table 1 summarizes the statistics for the actual rate, the

implied shadow rate, and the estimated lower bound. For example, the sam-

ple average of the lower bound for one month under the assumption of CRRA
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utility is 0.226%, and that of the shadow rate is 0.149%. The table confirms

the previous observation that the lower bounds of interest rate tend to be

negative as the maturity term increases. In addition, the sample average of

the shadow rates is positive. The gap, which is defined as the actual rate

minus the lower bound, is also positive in every cell.

—————————————————-

Table 1

—————————————————-

Table 2 reports the parameter values of each AFNS model. λ and σij are

drift and volatility coefficients under a Q-measure, respectively. κP
ij is the

drift coefficient under a P -measure.

—————————————————-

Table 2

—————————————————-

3.3. The effect of quantitative easing

3.3.1. Impulse response

We now report the results of the analysis on how changes in the quanti-

tative easing policy affect the lower bound of interest rates and the economy.

Economists have generally argued that a near-zero interest rate no longer

conveys any information regarding a monetary policy stance. One solution

to overcome the issue of an unconventional monetary policy is to use a shadow

rate. Wu and Xia (2016) argued that a shadow rate model can be used to

summarize the macroeconomic effects of an unconventional monetary policy.

This study takes a further step to argue that a monetary policy stance affects
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the lower bound of interest rates and economy, when assuming time-varying

lower bounds. Figures 3 to 6 plot the impulse responses of the following

six macroeconomic variables: IP, CU, UR, HS, PI, and LB, to the impulse,

namely, quantitative easing measure Mt (monetary base or BOJ reserves).

The impulse is set at 1% change of the standardized series of quantitative

easing measure.

—————————————————-

Figure 3

—————————————————-

—————————————————-

Figure 4

—————————————————-

—————————————————-

Figure 5

—————————————————-

—————————————————-

Figure 6

—————————————————-

In Figures 3 and 4, the impulse is the monetary base. There are four matu-

rities from one month to 12 months, and six variables for each maturity term.

We observe an increase in IP, CU, and PI for both types of utility functions.

These effects do not persist for long and end within a year. CRRA-LBs do

not respond greatly to an expansionary monetary base, whereas HABIT-LBs
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display slight declines. The magnitudes of the effects, however, are not large.

Figures 5 and 6 show impulse responses to a shock to the BOJ’s reserves. In

contrast to the monetary base, we do not observe increases in IP, CU and PI

for either type of utility functions. However, some of LBs respond slightly

to an expansionary reserves policy. In summary, expansion of the monetary

base as a method of quantitative easing policy is more effective in stimulating

the real economy than expansion of the BOJ’s reserves. However, the effects

are not persistent. The results also suggest that neither the expansion of the

monetary base nor the reserves have a great effect on the lower bounds of

interest rates. When the BOJ adopted a quantitative easing policy in 2001, it

targeted the BOJ’s reserves. It has gradually increased the targeted amount

of BOJ’s reserves from ¥5 trillion to ¥35 trillion in January. 2004. When the

BOJ implemented a quantitative and qualitative monetary easing (QQME)

in April. 2013, it changed its target om the BOJ’s reserves to the monetary

base. According to both the BOJ and textbooks, the monetary base consists

of the BOJ’s reserves and the currency. In other words, the difference between

the monetary base and the BOJ’s reserves is the currency. However, during

the period in which the quantitative easing policy was in place, the ratio of the

monetary base to the BOJ’s reserves varied significantly. As Figure 7 shows,

this ratio declined in the midst of the 2000s and during the period in which

the BOJ started a large-scale asset purchasing in the late 2000s. Recently,

this ratio has become less than two for the first time. For this reason, a policy

of monetary base targeting is different from that of targeting BOJ’s reserves.

The question arises as to which instrument a central bank should use as a

quantitative measure. Our results favor the expansion of the monetary base
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policy to the expansion of the BOJ’s reserves. However, neither of these two

simple policies can lower the lower bounds of interest rates.

—————————————————-

Figure 7

—————————————————-

3.3.2. Granger-causality tests

In this subsection, we examine a Granger-causality test from the mone-

tary pol- icy variable to the lower bound. Table 3 shows that the monetary

base does not. Granger-cause the lower bound for each model and maturity

term at the 5% significance level, except for the six- month HABIT. On the

other hand, the BOJ’s reserves Granger-cause the lower bound for less than

six months under both utility types at the 5% significance level. The effect

of an expansion of the BOJ’s reserve policy on the lower bound occurs only

in the shorter months. The BOJ used reserves as the quantitative easing

measure from March 2001 to February 2006 and used the monetary base

as such a measure from April 2013 11. As a robustness check, we examine

the effects of the two measures used as the policy target, i.e., only during

the period in which the measure was employed. To this end, we create the

cross-term of the target and the period dummy that takes the value of one

when the target is set as the quantitative easing measure. Table 4 presents

the results of Granger-causality for this analysis. The monetary base did

not Granger-cause lower bounds for any maturity term. The BOJ’s reserve

11Our sample period ends in December 2016.
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policy Granger-caused the lower bound only for a maturity term less than

six-month under the Habit utility. Hence, the results in Table 3 are robust

to restricting the appropriate period to that in which the BOJ’s reserves are

targeted as the measure of quantitative easing.

—————————————————-

Table 3

—————————————————-

—————————————————-

Table 4

—————————————————-

3.3.3. Variance Decomposition

The final analysis examines a forecast error variance decomposition (FEVD)

with a 5-year-horizon after the FAVAR estimation. As shown in Table 5, the

FEVDs are mostly less than 10%. However, we have a relatively high FEVDs

of the monetary base under Habit utility. This result suggests that a mone-

tary base policy may affect the lower bounds of interest rates.

4. Conclusion

This study investigates the influence of an unconventional monetary pol-

icy, i.e., quantitative easing, on the economic activity and the lower bounds of

interest rates. We estimate the shadow rates implied by consumption-Euler

equations and calculate the time-varying lower bounds of interest rates im-

plied by Black’s option-based theory of shadow rate, employing AFNS term

structure models. Estimation of the three-factor FAVAR system, including
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lower bounds of interest rates and quantitative easing measures, reveals that

the monetary policy shocks have little effect on the lower bounds of interest

rates. In particular, the effect of the monetary base is weaker than that of

BOJ reserves. However, quantitative easing measures have real effects on the

economy. The monetary base targeting policy is more effective than a BOJ

reserves policy in stimulating economic activity. We observed the declines

in lower bounds of interest rates in two periods, namely, the midst of the

2000s and 2010s. The former period corresponds to the BOJ’s commitment

period during which the BOJ announced its commitment to a quantitative

easing policy until the Japanese economy overcame the deflation. The latter

period corresponds to the period during which the BOJ employed large-scale

asset purchasing, including a QQME policy. Our evidence suggests that a

central bank can affect the lower bounds of interest rates by using appro-

priate measures. It also suggests that there was a room to lower the lower

bounds of interest rates at the early stage of the deflation period in Japan.

Our estimated shadow rates, which are calculated using consumption-Euler

equations, are higher than those reported in the existing literature. These

shadow rates that are consistent with Euler equations can be regarded as

true shadow rates, because they satisfy individuals’ optimality condition for

consumption, as long as individuals freely buy and sell shadow bonds. Our

analysis is limited in several respects. First, our analysis only considered a

maturity term of less than one year. In principle, the methodology can be

extended to a longer maturity, at the cost of reducing the sample size. For ex-

ample, had we considered two years maturity, we would have lost 12 months

of observations. Second, we only considered two types of utility functions.
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The methodology can be extended to include a variety of utility functions

as in Canzoneri et al. (2007). Third, we only considered AFNS(3) models

as term structure models. The methodology can be extended to include a

variety of term structure models, in particular, a broader class of affine term

structure and squared-root process models. Fourth, we only considered a

simple option pricing formula for the shadow bond. The methodology can

be extended to include, for example, a model allowing for a time-varying

strike price Such extensions are left for the future research.
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Figure 1: Estimated lower bound, shadow rate, and actual rate
(CRRA, AFNS3)

(Note) The figures indicate the actual rate i, the shadow rate s, and the
lower bound z for one-, three-, six-, twelve-months.
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Figure 2: Estimated lower bound, shadow rate, and actual rate
(HABIT, AFNS3)

(Note) The figures indicate the actual rate i, the shadow rate s, and the
lower bound z for one-, three-, six-, twelve-months.
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Table 2: Estimation resuts of AFNS(3) models
Model CRRA Habit

λ 1.238 *** 0.040 ***
(0.013) (0.005)

κP
11 0.003 *** 0.070 ***

(0.000) (0.015)
κP
12 -0.001 *** 0.144 ***

(0.000) (0.030)
κP
13 0.272 *** -0.091 ***

(0.000) (0.021)
κP
21 0.402 *** 0.238 ***

(0.000) (0.057)
κP
22 0.422 *** 0.475 *

(0.001) (0.266)
κP
23 -0.231 *** 0.829 ***

(0.000) (0.107)
κP
31 0.026 *** 0.130

(0.005) (0.219)
κP
32 0.017 *** 0.115

(0.008) (0.258)
κP
33 0.648 *** 0.515

(0.001) (0.384)
σ11 0.009 *** 0.008 ***

(0.000) (0.002)
σ22 0.009 *** 0.017 ***

(0.000) (0.002)
σ33 0.011 *** 0.076 ***

(0.001) (0.017)
σ21 -0.989 *** 0.750 ***

(0.000) (0.267)
σ31 -0.254 *** 0.088

(0.000) (0.816)
σ32 0.395 *** 0.180

(0.000) (0.499)
Log-likelihood -37628.9 -27446.6

(Notes) λ is a drift coefficient and σij is an element of volatility matrix. κP s
are the drift coefficients under P-measure.
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Table 3: Granger tests from instruments to lower bound

Monetary base BOJ reserve
Maturity χ2 p χ2 p

CRRA 1 0.441 0.802 15.959 0.000
3 1.970 0.373 6.405 0.041
6 1.992 0.369 2.610 0.271
12 0.458 0.795 1.194 0.550

HABIT 1 4.497 0.106 8.059 0.018
3 3.796 0.150 7.915 0.019
6 9.050 0.011 0.347 0.841
12 2.560 0.278 3.252 0.197

(Note) This table reports the results of Granger-causality test on the quan-
titative easing measure: Monetary base and BOJ reserves, for each month
and for each utility function.
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Table 4: Granger tests from instruments to lower bound with target period
dummy

Monetary base BOJ reserve
Maturity χ2 p χ2 p

CRRA 1 0.607 0.895 0.885 0.829
3 1.517 0.678 0.101 0.992
6 1.141 0.767 0.122 0.989
12 0.713 0.870 0.263 0.967

HABIT 1 1.303 0.728 16.950 0.001
3 1.484 0.686 8.894 0.031
6 5.575 0.134 0.523 0.914
12 3.137 0.371 0.180 0.981

(Note) This table reports the results of Granger-causality test on the quanti-
tative easing measure: Monetary base and BOJ reserves, for each month and
for each utility function. To examine the effect of each measure (Monetary
base or BOJ reserves) when each measure was targeted by BOJ, we use the
cross-term of each measure and the targeted period dummy. The monetary-
base-targeted-period-dummy takes one when monetary base was targeted and
zero otherwise. The BOJ-reserves-targeted-period-dummy takes one when
BOJ reserves was targeted and zero otherwise.
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Table 5: Forecast error variance decomposition
One-Month Three-month Six-Month One-year

Monetary Base
CRRA 0.035 0.017 0.013 0.006

HABIT 0.145 0.222 0.209 0.149

BOJ reserves
CRRA 0.119 0.054 0.033 0.047

HABIT 0.039 0.032 0.000 0.005
(Note)This table indicates the results of the variance decomposition at five-
year-horizon.
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